Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Database
Language
Document Type
Year range
1.
Energies ; 16(3), 2023.
Article in English | Scopus | ID: covidwho-2255126

ABSTRACT

Elevated medical waste has urged the improvement of sustainable medical waste treatments. A bibliometric analysis is initially conducted to investigate scientific development of medical waste management to pinpoint the publication trends, influential articles, journals and countries and study hotspots. Publications on medical waste and its management sharply increased since 2020. The most influential article was written by Klemeš et al., and "Waste Management and Research” is the most productive journal. India, China, the United Kingdom, Iran and Italy have published the most works. The research spotlights have switched from "human” and "sustainable development” in 2019 to "COVID-19” and "circular economy” in 2021. Since government acts essentially in handling medical waste and controlling disease transmission, rule implementations among the abovementioned countries are summarized to seek gaps between scientific advancement and regulatory frameworks. For accomplishing a circular economy, waste-to-energy technologies (incineration, gasification, pyrolysis, plasma-based treatments, carbonization, hydrogenation, liquefaction, biomethanation, fermentation and esterification) are comprehensively reviewed. Incineration, gasification, pyrolysis and carbonization are relatively feasible methods, their characteristics and limitations are further compared. By holistically reviewing current status of medical waste research, the focal points involved in management at the policy and technical level have been highlighted to find proper routes for medical waste valorization. © 2023 by the authors.

2.
Chemical Engineering Journal ; 451, 2023.
Article in English | Scopus | ID: covidwho-2241923

ABSTRACT

In accordance with global economic prosperity, the frequencies of food delivery and takeout orders have been increasing. The pandemic life, specifically arising from COVID-19, rapidly expanded the food delivery service. Thus, the massive generation of disposable plastic food containers has become significant environmental problems. Establishing a sustainable disposal platform for plastic packaging waste (PPW) of food delivery containers has intrigued particular interest. To comprise this grand challenge, a reliable thermal disposable platform has been suggested in this study. From the pyrolysis process, a heterogeneous plastic mixture of PPW was converted into syngas and value-added hydrocarbons (HCs). PPW collected from five different restaurants consisted of polypropylene (36.9 wt%), polyethylene (10.5 wt%), polyethylene terephthalate (18.1 wt%), polystyrene (13.5 wt%), polyvinyl chloride (4.2 wt%), and other composites (16.8 wt%). Due to these compositional complexities, pyrolysis of PPW led to formations of a variety of benzene derivatives and aliphatic HCs. Adapting multi-stage pyrolysis, the different chemicals were converted into industrial chemicals (benzene, toluene, styrene, etc.). To selectively convert HCs into syngas (H2 and CO), catalytic pyrolysis was adapted using supported Ni catalyst (5 wt% Ni/SiO2). Over Ni catalyst, H2 was produced as a main product due to C[sbnd]H bond scission of HCs. When CO2 was used as a co-reactant, HCs were further transformed to H2 and CO through the chemical reactions of CO2 with gas phase HCs. CO2-assisted catalytic pyrolysis also retarded catalyst deactivation inhibiting coke deposition on Ni catalyst. © 2022 Elsevier B.V.

SELECTION OF CITATIONS
SEARCH DETAIL